Design and FPGA Implementation of an Adaptive Demodulator

Sandeep Mukthavaram
August 23, 1999

Thesis Defense for the Degree of Master of Science in Electrical Engineering

Department of Electrical Engineering and Computer Science
University of Kansas, Lawrence
Introduction

Field Programmable Gate Arrays (FPGAs) -

- *Re-configurability* - ideally suited for adaptive applications. Circuits can be loaded and deleted as required.

- *Parallelism* - required for high throughput computation involved with real time processing of signals.

Adaptive Signal Processing Systems -

- will need to operate in rapidly changing environments.

- require re-programmable hardware to implement adaptive algorithms.

The Idea

Exploit *re-configurability* and *parallelism* offered by FPGAs to build adaptive signal processing systems.
Design and FPGA Implementation of an Adaptive Demodulator

Presentation Overview

- Motivation
- Automatic Modulation Recognition (AMR)
 - Need for AMR
 - Existing strategies
 - Novel algorithm of AMR
- Design Flow for FPGA Synthesis
- Design and FPGA Implementation of PSK and FSK demodulators
- Reconfigurable Platform
 - WILDFORCE
 - Adaptive Demodulation
- Testing and Results
- Conclusions and Future work
Motivation

• To suitably adapt to changing requirements, control strategies targeted at selecting and tuning of signal processing algorithms need to be developed.

• Changing requirements are identified as, to be able to support processing of communication signal of different typologies that emit from different sources.

• Universal receivers do exist that can switch between resident demodulators based on the input from the modulation recognizer.

• The proposed approach is to dynamically reconfigure the same FPGA to perform the necessary demodulation while monitoring for any changes in the input.
Why do we need AMR?

- Civilian Applications
 - Signal conformation, interference identification, spectrum management, monitoring non-licensed transmitters.

- Defense Applications
 - Electronic warfare, surveillance, threat detection, threat analysis, warning, target acquisition and jamming.

- Example: COMINT (Communications Intelligence)
 - A military surveillance system
Automatic Modulation Recognition

Existing Strategies -

• Decision theoretic approaches
 • Probability and hypotheses testing are employed
 • Statistical moments, Likelihood functions, auto-regressive spectrum modeling are popular methods.

• Statistical Pattern Recognition
 • Pre-processing of signals
 • Key feature extraction (Instantaneous amplitude, frequency and phase, Spectral processing)

• Pattern Recognition
 • Training phase
 • Testing phase

• Artificial Neural Networks
Design and FPGA Implementation of an Adaptive Demodulator

Automatic Modulation Recognition

Novel Algorithm of AMR

Modulated Signal → \((*)^2\) → Averaging Filter → + - → \(|u|\) → Spike Counter → QPSK → BPSK

Modulated Signal → Unit Delay → Zero Cross Counter → \(\sum\) → Zero Cross Detector

Modulated Signal → Time Period = Decision interval → Decision Clock

PSK - \{BPSK, QPSK\}
FSK - BFSK

Modulations Supported:
PSK - \{BPSK, QPSK\}
FSK - BFSK

University of Kansas Adaptive Computing Systems
Automatic Modulation Recognition

FPGA Implementation details of AMR

• Specifications
 • Data rate: 100 kbps
 • Carrier: 500 kHz - BPSK, QPSK
 400 kHz - Mark
 600 kHz - Space
 } BFSK
 • PSK Threshold: 2 mV, for input of 500 mV P-P
 • FSK Threshold: 9
 • Decision Period: 2048 clock cycles, 8 MHz clock

FPGA Implementation Details:
• Parttype : 4085 xla HQ240 -09
• CLB Usage : 588 of 3136 (18%)
• Max. Clock : 26.4 MHz
• Sampling : 8 MHz
Design and FPGA Implementation of an Adaptive Demodulator

Design Flow

Signal Processing Toolkits

Derive Design Parameters From Specification

Block Diagram Verification Tools

Hand coded VHDL

Synthesis Tools

Optimized FPGA Netlist

Place and Route Tools

Placed and Routed Netlist

Programmable Hardware

FPGA Synthesis

University of Kansas

Adaptive Computing Systems
Design and FPGA Implementation of an Adaptive Demodulator

BPSK Demodulator

Block Diagram

- **BPSK Signal**
- **Delay**
- **Carrier Recovery**
- **X**
- **Data Filter**
- **Threshold**
- **Demodulated Data**

- Carrier: 500 kHz
- Data Rate: 100 kbps

BPSK Signal

\[s(t) = k \cdot d(t) \cos (w_c t + \theta) \]

where \(d(t) \in \{-1,1\} \)

- \(k \) - amplitude
- \(w_c \) - carrier frequency
Design and FPGA Implementation of an Adaptive Demodulator

BPSK Demodulator

Carrier Recovery

- BPSK Signal → \((*)^2\) → BPF @ \(2f_c\) → Sine to Square → \(f/2\) → Square to Sine → LPF @ \(f_c\) → Recovered Carrier

FPGA Implementation Details:
- Parttype: 4025E HQ240 -4 (Xilinx).
- CLB Usage: 530 of 1024 (51%).
- Max. Clock: 10.14 MHz.
- Sampling: 8 MHz.

Screen shot from the oscilloscope

- BPSK Signal
- Recovered Carrier
- Bit Transition
FPGA Implementation details

- 72.5 MHz IF signal at the input is sub-sampled using an 8 MHz clock and the image at the 500 kHz is used for rest of the processing. The information content is retained.

- All filters implemented as Finite Impulse Response.

- Multipliers in the filters reduced to Look Up Tables (LUTs).

FPGA Implementation Details:

- Parttype : 4025E HQ240 -4 (Xilinx).
- CLB Usage : 898 of 1024 (87%)
- Max. Clock : 10.07 MHz
- Sampling : 8 MHz
Design and FPGA Implementation of an Adaptive Demodulator

QPSK Demodulator

Block Diagram

- QPSK Signal
- Carrier Recovery
- -90°
- X
- LPF
- Threshold

QPSK Signal

Parallel to Serial

Diff-Decoder

Rx data

• Carrier Frequency: 500 kHz
• 100 k symbols/sec
• 200 k bits/sec
• Differential Encoding

University of Kansas
Adaptive Computing Systems
Design and FPGA Implementation of an Adaptive Demodulator

QPSK Demodulator

FPGA Implementation Details

- Most of the blocks designed for BPSK re-used.
- Hilbert Transformer used for the 90° phase shift, is implemented as a FIR structure with anti-symmetric coefficients.
- Design is partitioned across three FPGA chips for better timing and performance.
QPSK Demodulator

FPGA Implementation Details

<table>
<thead>
<tr>
<th>FPGA</th>
<th>Modules</th>
<th>Parttype</th>
<th>CLB Usage</th>
<th>Max. Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOFPGA:</td>
<td>Lower Channel, Parallel-to-Serial, Differential Decoder.</td>
<td>4013 PG223 -5 (Xilinx)</td>
<td>538 of 576 (92%)</td>
<td>10.06 MHz</td>
</tr>
<tr>
<td>FPGA1:</td>
<td>Carrier Recovery, Hilbert Transformer</td>
<td>4025E HQ240 -4 (Xilinx)</td>
<td>835 of 1024 (81%)</td>
<td>9.41 MHz</td>
</tr>
<tr>
<td>FPGA2:</td>
<td>Upper Channel.</td>
<td>4025E HQ240 -4 (Xilinx)</td>
<td>530 of 1024 (52%)</td>
<td>9.34 MHz</td>
</tr>
</tbody>
</table>

Summary:
- CLB Usage: 2003 CLBs
- Max. Clock: 9.34 MHz
- Sampling: 8 MHz
- APTIX MP3A Prototyping board.
Design and FPGA Implementation of an Adaptive Demodulator

BFSK Demodulator

Block Diagram

- **BFSK Signal**
 - Zero Cross Detector
 - Zero Cross Counter
 - Threshold
 - Demodulated Data

Specifications:
- Data rate: 100 kbps
- Carrier: 400 kHz - Mark
 600 kHz - Space

FPGA Implementation Details:
- Parttype: 4013 PG223-5 (Xilinx)
- CLB Usage: 4 of 576 (1%)
- Max. Clock: 63.4 MHz
- Sampling: 8 MHz
Design and FPGA Implementation of an Adaptive Demodulator

Re-configurable Platform

WILDFORCE Architecture
Design and FPGA Implementation of an Adaptive Demodulator

Re-configurable Platform

WILDFORCE Software Hierarchy

- User’s Host C Application
 (API)
- WILDFORCE API Library
 (OS specific drivers interfaces)
- WILDFORCE Device Driver
 (Hardware interfaces)
- User’s Processing-Element Application
Design and FPGA Implementation of an Adaptive Demodulator

Adaptive Demodulation

HOST
Configuration Files
- AMR
- BPSK
- AMR
- QPSK
- AMR
- BFSK

Modulated Signal
FPGA Configuration Data

PE ‘1’
LOGIC CORE
Automatic Modulation Recognizer
Demodulator

Enable Signal
Demodulated Data
Test Setup for Performance Evaluation of PSK Demodulators

- Bit Error Rate Tester
- STEL-9231 PSK Modulator
- IF Signal Generator
- Noise Generator
- Analog Front End
- Analog BPF @ 70 MHz
- 20 dB Amp
- A/D Converter
- Sample Clock 8 MHz
- APTIX MP 3A BOARD
- FPGA1: XC4025E HQ240-4
- FPGA2: XC4025E HQ240-4
- FPIC1
- FPIC2
- IOFPGA XC4013 PG223-5

Testing

Design and FPGA Implementation of an Adaptive Demodulator

University of Kansas
Adaptive Computing Systems
How good are the PSK demodulators?

E_b/N_0 Vs BER curves for BPSK: Implementation Vs Theoretical
Results

E_b/N_0 Vs BER curves for QPSK: Implementation Vs Theoretical
Results

E_b/N_0 Vs BER curves for PSK: BPSK Vs QPSK
How good is the carrier recovery scheme used?

- The carrier recovery scheme employed for the BPSK demodulation could tolerate a carrier in the band 450-550 kHz, which is about 100 kHz. This can be attributed to the bandwidth of the bandpass filter in the carrier recovery circuit.

- The QPSK receiver had a tolerance of 50 kHz drift in the carrier frequency centered at 500 kHz.
Results

Noise Tolerance of the AMR algorithm

- The proposed algorithm of AMR was tested to measure its performance in presence of Additive White Gaussian Noise.
- AMR algorithm could tolerate noise levels as low as Signal-to-Noise ratio of 20 dB when all the modulations BPSK, QPSK, and BFSK are present.
- The algorithm could detect the modulation correctly for BFSK with noise levels as low as 5 dB of SNR.
- Noise tolerance for modulations BPSK and QPSK remain at 20 dB. (Depends on how good the filtering is !)
Conclusions

• Proposed and implemented a novel algorithm of automatic modulation recognition for detecting BPSK, QPSK and BFSK.

• Designed and implemented the individual demodulators - BPSK, QPSK and BFSK on FPGAs.

• The AMR algorithm along with the demodulators are integrated into an adaptive demodulator.

• The capabilities offered by the re-configurable platform have been demonstrated which can be a promising choice for a more robust signal processing or communication system.
Design and FPGA Implementation of an Adaptive Demodulator

Future Work

• Extension of the modulation recognition algorithm to accommodate other modulation types.

• Analysis of the effects of signal-to-noise ratio on the thresholds in the AMR algorithm to make them more noise tolerant than 20 dB.

• Exploit the re-configurability of FPGAs to partially reconfigure them, thereby making the demodulators adapt to changing environments. Supporting a wide range of data rates would be a good example in this direction. To support the drift of the carrier frequencies in the spectrum could be another…Many more !!!